Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes
نویسندگان
چکیده
The Plantae comprising red, green (including land plants), and glaucophyte algae are postulated to have a single common ancestor that is the founding lineage of photosynthetic eukaryotes. However, recent multiprotein phylogenies provide little or no support for this hypothesis. This may reflect limited complete genome data available for red algae, currently only the highly reduced genome of Cyanidioschyzon merolae, a reticulate gene ancestry, or variable gene divergence rates that mislead phylogenetic inference. Here, using novel genome data from the mesophilic Porphyridium cruentum and Calliarthron tuberculosum, we analyze 60,000 novel red algal genes to test the monophyly of red + green (RG) algae and their extent of gene sharing with other lineages. Using a gene-by-gene approach, we find an emerging signal of RG monophyly (supported by ∼50% of the examined protein phylogenies) that increases with the number of distinct phyla and terminal taxa in the analysis. A total of 1,808 phylogenies show evidence of gene sharing between Plantae and other lineages. We demonstrate that a rich mesophilic red algal gene repertoire is crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists.
منابع مشابه
Phylogenomic Analysis of “Red” Genes from Two Divergent Species of the “Green” Secondary Phototrophs, the Chlorarachniophytes, Suggests Multiple Horizontal Gene Transfers from the Red Lineage before the Divergence of Extant Chlorarachniophytes
The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the "green" lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of "red" genes in their nuclear genomes. To elucidate the origin of such "red" gene...
متن کاملNon-random sharing of Plantae genes.
The power of eukaryote genomics relies strongly on taxon sampling. This point was underlined in a recent analysis of red algal genome evolution in which we tested the Plantae hypothesis that posits the monophyly of red, green (including plants) and glaucophyte algae. The inclusion of novel genome data from two mesophilic red algae enabled us to robustly demonstrate the sisterhood of red and gre...
متن کاملReevaluating the Green Contribution to Diatom Genomes
Photosynthetic diatom plastids have long been suggested to have originated by the secondary endosymbiosis of a red alga. However, recent phylogenomic studies report a high number of diatom nuclear genes phylogenetically related to green algal and green plant genes. These were interpreted as endosymbiotic gene transfers (EGT) from a cryptic green algal endosymbiosis. We reanalyzed this issue usi...
متن کاملBabesia bovis: a comprehensive phylogenetic analysis of plastid-encoded genes supports green algal origin of apicoplasts.
Apicomplexan parasites commonly contain a unique, non-photosynthetic plastid-like organelle termed the apicoplast. Previous analyses of other plastid-containing organisms suggest that apicoplasts were derived from a red algal ancestor. In this report, we present an extensive phylogenetic study of apicoplast origins using multiple previously reported apicoplast sequences as well as several seque...
متن کاملEvolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and unique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011